Image of white tree blooms in front of building with words 15th Annual Honors Engineering Symposium, University of Arkansas, Saturday, April 8, 2023

A MESSAGE FROM THE FIRST-YEAR ENGINEERING PROGRAM DIRECTOR

Richard Cassady

On behalf of the faculty and staff of the College of Engineering at the University of Arkansas, it is my pleasure to welcome you to the 15th Annual Honors Engineering Symposium. The purpose of the symposium is to showcase the research and innovation efforts of 76 first-year engineering students, five first-year business students, and four first-year arts and sciences students who are enrolled in the Honors College or Honors College Path program.

Forty students participated in a research colloquium during the fall semester in which they learned about various aspects of academic research in an engineering program. Throughout the year, the students have worked individually or in teams on projects mentored by College of Engineering faculty. The 19 research projects cover several areas of tremendous recent attention in the engineering professions.

Fifty-eight students participated in an innovation colloquium during the fall semester in which they learned about various aspects of innovation and entrepreneurship. Throughout the year, the students have worked in teams on projects mentored by University of Arkansas Faculty to help them with innovative design projects. The student teams also had to consider product market and business development plans.

The symposium will run concurrent presentation and poster sessions throughout the day. We invite attendees to attend the poster sessions and visit one-on-one with students about their projects. Attendees may also attend presentation sessions during which they can learn details of the projects. Everyone is welcome at the awards ceremonies.

I appreciate your support and again welcome you to our 15th Annual Honors Engineering Symposium.

Sincerely,
C. Richard Cassady, Ph.D.
Director of the First-Year Engineering Program


FROM THE COLLEGE OF ENGINEERING DEAN

Dean Kim Needy

Read Message

FROM THE WALTON COLLEGE DEAN

Dean Matt Waller

Watch Video

Dean Kim Needy, College of Engineering

Hello and welcome to the 15th Annual Honors Engineering Symposium. Today, we honor our students who are shaping the world of tomorrow! Participating in this symposium is a significant achievement, and you should be proud. Well done! You have gone above and beyond what is required of first-year students by choosing to participate in this research or innovation experience and for that we celebrate. Please enjoy the presentations and posters of those who will change research, product marketing and business development of the community, state, nation and the world.

Dean Kim LaScola Needy

 

Dean Matt Waller, Sam M. Walton College of Business

RESEARCH TEAMS

Using 3D Printed Synthetic Materials to Test Accuracy of Data Collection Process

Students

Andrew Hamilton | Biomedical Engineering

Eli Contorno | Biomedical Engineering

Faculty Mentor

Morten Jensen, Ph.D. | Biomedical Engineering

Sam Stephens, Graduate Student Mentor | Biomedical Engineering

Project Description

There are dozens of treatment options for the variety of mitral valve diseases that exist. Developing a computer simulation of the mitral valve would allow clinicians to tailor treatments to patient specific data. The methods for collecting data necessary to build an accurate simulation requires tedious suturing of porcine heart valve tissue into test chambers. 3D resin printed materials can be used to test this data collection process to ensure collected data is accurate.

Developing a Swarm Manufacturing System for Flexible Manufacturing

Student

Nathan Fuhrman | Computer Science

Christopher Guy | Civil Engineering

Faculty Mentor

Wenchao Zhou, Ph.D. | Mechanical Engineering

Renchang Wu, Graduate Student Mentor | Mechanical Engineering

Project Description

Swarm Manufacturing is a promising new technology that provides efficient general purpose manufacturing. Our focus is to help develop a swarm manufacturing platform in a lab setting. The university has already made great strides in this goal and have moved to expanding the current setup. We have worked on a couple parts of this expansion including assembling floor tiles and a SCARA 3D printer.

Utilizing Cellulose Nanocrystals (CNC) to Improve the Mechanical Properties of Polycaprolactone (PCL)-Based Cell Scaffolds

Student

Jared Noel | Chemical Engineering

Taylor Norris | Biomedical Engineering

Faculty Mentor

Dr. Jin-Woo Kim | Biological and Agricultural Engineering and Bio/Nanotechnology Group

Joseph Batta-Mpouma, Graduate Student Mentor | Biological and Agricultural Engineering and Bio/Nanotechnology Group

Project Description

Cardiovascular disease is the leading cause of death worldwide, attributed to the formation of scar tissue in the heart. Cell scaffolding is a promising technology in tissue engineering to address scarring, however, polycaprolactone (PCL), a common material used in scaffolds, cannot withstand the mechanical stresses induced by the heart. This project aims to strengthen the PCL-based scaffold with a cellulose nanocrystal (CNC) additive by determining the strongest ratio of PCL to CNC.

How Garlic Extracellular Vesicles Affect Cancer Cell Proliferation

Students

Ella Martini | Biomedical Engineering

Molly Walker | Biomedical Engineering

Faculty Mentor

Dr. Young Hye Song | Biomedical Engineering

Emory Gregory, Graduate Student Mentor | Biomedical Engineering

Isabel Powers, Undergraduate Student Mentor | Biomedical Engineering

Project Description

Previous literature has shown that extracellular vesicles extracted from foods can be applied in a cancer cell culture. Our project observes the effect of garlic extracellular vesicles (EV’s) on cancer growth. We have established an isolation protocol that has allowed us to run tests on pancreatic cancer and benign cell cultures that indicate cell death, cell viability, and antigen content.

Building a chamber that simulates Venus’s environment to effectively measure emissivity of mineral samples

Students

Ben Harp | Mechanical Engineering

Shae Threlfall | Mechanical Engineering

Faculty Mentor

Dr. Larry Roe | Mechanical Engineering

Vincent Chevrier, Graduate Student Mentor | Planetary Science

Project Description

Because Venus is notoriously hard to study aerially and on site, we must learn more about how different minerals would react on the planet to understand planetary evolution and potentially even habitability. Scientists can use IR spectroscopy to measure what these minerals emit under Venus’s high temperature and pressure conditions. To do this, we are built a vacuum chamber that can heat a sample to 480 degrees Celsius.

Test-Vector Leakage Assessment of Falcon Post-Quantum Cryptography Algorithm

Students

Luke Ahlemeier | Biological Engineering

Russell Rathbun | Computer Science and Computer Engineering

Faculty Mentor

Dr. Alexander Nelson | Computer Science and Computer Engineering

Tristen Teague, Graduate Student Mentor | Computer Science and Computer Engineering

Project Description

The emergence of quantum computers leads to the necessity for new standardized cybersecurity algorithms, which may be vulnerable to a cryptography attack method known as side-channel analysis, wherein hardware power data is collected and exploited to break that algorithm. Digital signature algorithms are of particular importance as a current underpinning of Transport Layer Security (TLS) and a mechanism to support proof-of-ownership. We conducted a hypothesis-driven research project to identify whether a current standardization candidate (Falcon) is vulnerable to side channel attacks.

Using an Augmented Reality Environment to Expedite the Process of Autism Detection in Children

Students

Claire George | Biomedical Engineering and Mathematical Sciences

Thomas Farrell | Computer Science and Computer Engineering

Faculty Mentor

Dr. Khoa Luu | Computer Science and Computer Engineering

Thanh-Dat Truong, Ph.D. Student Mentor | Computer Science and Computer Engineering

Project Description

Autism detection in young children is a very lengthy process. Shortening this process would benefit the children, families, and health care professionals involved. Our goal is to expedite this process by creating an augmented reality world in which autism testing can be conducted in. This will hopefully create an environment where the children feel more comfortable, decrease the cost of autism testing, and allow doctors to see more patients.

Varying Concentrations of Biopolymers in Biodegradable Microneedle Patches for Meloxicam Delivery for Pain Management in Cattle

Students

Lillian Hutchinson | Chemical Engineering

Justin Massara | Chemical Engineering

Faculty Mentor

Dr. Jorge Almodovar | Chemical Engineering

Katherine A. Miranda-Munoz, Student MentorStudent Mentor | Biomedical Engineering

Project Description

Microneedle patches are a method of drug delivery that can be used to distribute pain medication to cattle in a minimally invasive and pain-free manner. Biodegradable microneedle patches dissolve when applied to the skin, releasing the medication into the tissue, so for the medication to be fully released the patch must dissolve fully. This project tests different concentrations of the biopolymers that make the needles to determine the most effective concentration for drug release.

Maximizing efficiency and minimizing distortion in a class AB audio amplifier

Students

Caden Monger | Electrical Engineering

Lucas Hogue | Electrical Engineering

Faculty Mentor

Dr. Jeff Dix | Electrical Engineering

Project Description

An audio amplifier is a technology that amplifies, or increases the magnitude of, a signal. A desirable audio amplifier requires good energy efficiency and minimal distortion. One basic type of amplifier is the class AB amplifier, which divides the load between two transistors to increase efficiency. Our task was to balance the tradeoff between efficiency and distortion in a class AB amplifier using simulation and a physical model.

Using Venous Physiology to Predict Dehydration in the Pediatric Population

Students

Charles Williams | Computer Science and Computer Engineering

James McKenzie | Mechanical Engineering

Faculty Mentor

Jingxian Wu | Electrical Engineering

Md Abul Hayat, Graduate Student Mentor | Electrical Engineering

Project Description

Dehydration is common in children, but no standard dehydration monitor exists meaning those brought into the ER must wait for lengthy test results. Through our project, we will utilize a venous pressure sensor connected to the bloodstream alongside an algorithm to determine dehydration levels. We will then improve the accuracy of this algorithm via cross-referencing data results.

Designing Embedded Systems to Monitor Electric and Power Grid in Real-Time

Students

Abhinav Komanduri | Electrical Engineering

Darren Blount | Computer Science and Computer Engineering

Faculty Mentor

Roy McCann, Ph.D. | Electrical Engineering

Project Description

As the complexity of the power grid continues to increase, the ability to collect and analyze real-time data is crucial to keep up with rising energy demands. The objective is to use an Arduino and sensors to measure electric and magnetic fields and infrared temperatures near transmission lines to monitor power flow. In order to use machine learning analysis, we can transmit the collected data to a local database.

Designing a Robot for the NASA Lunabotics Challenge

Students

Aidan Frisby | Mechanical Engineering

Laytin Bryan | Mechanical Engineering

Faculty Mentor

Dr. Uche Wejinya | Mechanical Engineering

Project Description

The resources available on Earth are limited and difficult to extract, and NASA wants future engineers to look upward for potential solutions. The moon is rich in aluminum and iron, and we have been tasked with creating an autonomous robot that would be capable of extracting these materials, built under strict guidelines.

Creating an Autonomous Robot Through Machine Learning and Integrated Cameras

Students

Brady Morgan | Computer Science and Computer Engineering

Hayden Threlfall | Computer Science and Computer Engineering

Faculty Mentor

Thi Hoang Ngan Le| Computer Science and Computer Engineering

Kashu Yamazaki, Graduate Student Mentor | Computer Science and Computer Engineering

Project Description

Through a machine learning algorithm, we have worked to teach the Unitree Robotics Go1 robot how to run itself when given a task. As of right now, the machine learning algorithm works only within simulations and not in the real word, but the main focus has turned away from the simulations and into computer vision in order to solve the Go1’s lack of depth perception by implementing the Microsoft Azure Camera.

FreshLight: UV LEDs as an Alternative to UV Lamps for Disinfecting Bacteria

Students

Josh Chambers | Computer Science and Computer Engineering

Levi Pile | Chemical Engineering

Faculty Mentor

Dr. Han Hu, Faculty Mentor | Mechanical Engineering

Kaitlyn Vinh, Graduate Student Mentor | Mechanical Engineering

Anthony Tello, Graduate Student Mentor | Mechanical Engineering

Project Description

UV lamps have commonly been used to disinfect bacteria in fluids at a small-scale. LEDs have proven to be cheaper and more efficient, but their disinfecting ability has not been determined yet. The goal of FreshLight is to see if UV LEDs are an appropriate replacement to outdated UV lamps using a small personalized filter.

Tuning gene expression in macrophages for the purpose of muscle regeneration

Students

Isabella McGill | Biomedical Engineering

Ian Popp | Chemical Engineering

Faculty Mentor

Christopher Nelson, Ph.D. | Biomedical Engineering

Alexis Ivy, Graduate Student Mentor | Biomedical Engineering

Mary Jia, Undergraduate Student Mentor | Biomedical Engineering

Project Description

Macrophages are white blood cells that repair damaged tissue by influencing inflammation. We will target Macrophages by modifying gene expression, so we can treat Volumetric Muscle Loss. We will be regulating gene expression with CRISPR silencing. This allows us to modify the cell’s RNA for the wound treatment. IL-6 can be silenced or activated using epigenetic regulation to impact macrophages. The results of our modification can be viewed using quantitative PCR.

Improving Efficiency of Ionic Propulsion and Plasma Flight

Students

Mattie McLellan | Computer Science and Computer Engineering

Jonathan Rosas | Mechanical Science

Faculty Mentor

Dr. Poa Adam Huang | Mechanical Engineering

Ethan Graef, Undergraduate Student Mentor | Mechanical Engineering

Project Description

This project is the start in understanding ionic flight and moving towards electric propulsion for aircraft. We are creating more efficient dialectic barrier discharge (DBD). These are grid structures that act like a capacitor with one plate and one grid. We are working to find the most efficient grid structure to be applied to a prototype plane to create enough lift to sustain flight.

Advancing Machine Learning to estimate Chicken Gait/Welfare

Students

Nick Smith | Computer Science and Computer Engineering

Winston Bounsavy | Computer Science and Computer Engineering

Faculty Mentor

Thi Hoang Ngan Le, Ph.D. | Mechanical Engineering

Minh Tran, Graduate Student Mentor | Computer Science and Computer Engineering

Project Description

A chicken’s gait characterizes leg weakness and is a strong factor to estimate a chicken’s health. Our system takes a video of a chicken’s back as an input and automatically outputs the gait score using machine learning keypoint estimation technique. At each frame, keypoints are detected using Detectron 2 and the angle between two legs is computed. The chicken’s gait over an entire video is computed using keypoints across frames by a 1D-Convolutional-Neural-Networks.

Analyzing the Benefits of Simple Heating Systems for Anaerobic Digestion in Households

Students

Jonathon Mellor | Biological Engineering

Lucas Durnhofer | Electrical Engineering

Faculty Mentor

Dr. Jun Zhu | Biological Engineering

Yuanhang Zhan, Graduate Student Mentor | Biological Engineering

Project Description

Anaerobic Digestion is a process that farmers commonly utilize to transform poultry litter-- (a combination of chicken feathers, bedding, and droppings)-- into a much more usable fertilizer as well. The process also produces a biogas that can be collected and burned for heat or light. In our research we will explore the plausibility of using anaerobic digestions in households, focusing on the implementation of heating implements which can greatly boost the efficiency of the digestion process.

BIASD: A Tool to Help Engineers Find and Apply Biologically Inspired Solutions

Students

Luke Allison | Mechanical Engineering

Logan Smith |Mechanical Engineering

Faculty Mentor

David Jensen, Ph.D. | Mechanical Engineering

Project Description

The BIASD tool is a system based on strategy mapping meant to assist in the process of Biologically inspired design. Our role is to take Dr. Jensen’s already mapped binary question series and analogies and turn it into a computer readable program. We are using the CAMEO SYSML software to do so. Doing this will speed up and simplify the process of finding biologically inspired designs, making it a more viable option for engineers.

INNOVATION TEAMS

CutoutQuench

CutoutQuench

Students

Jace Beckwith | Chemical Engineering

Jonas Brown | Computer Engineering

Jonathan Digby |Electrical Engineering

Mohammad Faiq | Mechanical Engineering

Trey Merreighn | Industrial Engineering

Faculty Mentor

Karthik Nayani, Ph.D. | Chemical Engineering

Project Description

Expensive water in venues is a consistent problem that shouldn't be. Our project aims to eliminate expensive water in venues by shipping renewable cardboard cutouts to the venues, folding the cutouts on site in our vending machines, and filling the cutouts with filtered tap water. This bypasses the expense of shipping of water in the bottles, making bottle prices significantly cheaper.

Easy Off IV Solutions: Water Soluble Medical Adhesive

Easy Off IV Solutions: Water Soluble Medical Adhesive

Students

Luke Konnesky | Accounting

Harry Wilson | Industrial Engineering

Hudson Dulli | Economics

Jalee Spain | Civil Engineering

Sara Gideon | Civil Engineering

Faculty Mentor

Jessie Casida, Ph.D. | Eleanor Mann School of Nursing

Project Description

Medical adhesive removal is the cause of thousands of cases of further hospitalization and infection a year, especially in vulnerable populations. Easy-Off IV Solutions aims to create a water soluble adhesive that secures IV devices while eliminating medical adhesive-related injuries in the clinical setting, and is extremely simple to adhere and remove.

Stick-Rite

Stick-Rite

Students

Kason Ballard | Industrial Engineering

Christian Sandoval | Computer Science and Computer Engineering

Anthony Perez | Mechanical Engineering

Ennvoy Villarreal | Chemistry & Biochemistry

Jack Graham | Mechanical Engineering

Brayden McCauley | Mechanical Engineering

Zane Drozda | Mechanical Engineering

Faculty Mentor

Jacob Monroe, Ph.D. | Chemical Engineering

Project Description

We face issues walking in harsh slippery conditions every day, but does that really mean we have to keep buying new shoes to replace brand new looking shoes with worn down grips? Stick-Rite is the answer to that issue. We have innovated a solution to help you from not slipping in all different settings while still being able to show off your favorite shoe style.

4-wheels

4-wheels

Students

Corey Warden | Engineering

John Bante | Engineering

Kannon Pederson | Engineering

Faculty Mentor

Khoa Luu, Ph.D. | Computer Science and Computer Engineering

Thanh-Dat Truong | Computer Science and Computer Engineering

Project Description

There are safety issues with the leading alternative modes of transportation. This project explores solutions using an electric longboard by getting rid of the remote to free up a hand.

Green Gobbler

Green Gobbler

Students

Lawson Lancaster | Mechanical Engineering

Samuel Vinson | Biological Engineering & Interdisciplinary Studies

Celena Sabillon | Biochemistry

Colin Phifer | Computer Engineering

Faculty Mentor

Monty Roberts, M.S. | Mechanical Engineering

Project Description

Are you tired from your back hurting after an afternoon of weedeating? This pitch deck provides another solution for getting rid of those pesky weeds. We take a creative spin on the existing robot vacuum and apply it to lawncare.

Peasy: makes taking pills
easy peasy

Peasy: makes taking pills easy peasy

Students

Elise Cawelti | Biomedical Engineering

Elise Batchelor | Industrial Engineering

Barrett Johnson | Civil Engineering

Catherine Warren | Biological Engineering

Faculty Mentor

Uche Wejinya, Ph.D. | Mechanical Engineering

Project Description

We created a lid for pill bottles that allows people with Arthritis or tactile strength problems to access their pills easily. We tackle three key objectives with our mechanical design: simple to open, safe to children, and easy to remember.

Beam Industries’
RF Energy Harvester

Beam Industries’ RF Energy Harvester

Students

Matthew Schulze | Electrical Engineering

Charlie Cavanaugh | Biomedical Engineering

Cale Farrington | Electrical Engineering

Eli Barnett | Electrical Engineering

Landry Livingston | Business Finance

Faculty Mentor

Magda O. El Shenawee, Ph.D. | Electrical Engineering

Bilal Sanauddin Pirzada, M.S. | Electrical Engineering

Project Description

In this pitch deck, our group is sharing a bold new way to power electronic devices. By capturing radio waves from the air we can convert that energy into usable power for charging devices. This allows for companies to save on power and for people to charge their devices with energy that only would’ve been wasted.

Pantry Plus: Simplifying
the pantry process

Pantry Plus: Simplifying the pantry process

Students

Grace Harding | Computer Science and Computer Engineering

Garrett Horton | Mechanical Engineering

Juan Estrella | Industrial Engineering

Johnmark Clements | Computer Science and Computer Engineering

Faculty Mentor

Robert Saunders, M.S. | Electrical Engineering

Project Description

Is it possible to make shopping easier? To know exactly what you need with just a glance? This “Smart Pantry” allows our customers to do just that. With specific measurements and real time updates on your inventory, knowing what you have and what you need in your pantry will be a breeze.

Stretch & Go: Expandable
Kids Shoes

Stretch & Go: Expandable Kids Shoes

Students

Austin Brown | Strategy, Entrepreneurship and Venture Innovation (SEVI)

Kaderias Newton | Electrical Engineering

Bryan Williams | Computer Science

Jon Holmes-Smith | Civil Engineering

Faculty Mentor

Leslie Massey, M.S. | Environmental Engineering

Project Description

Orthopedic experts recommend that children's shoes should be replaced three to four times a year. Because children’s feet grow so quickly, parents purchase shoes that are too large for them in order to cut costs. This can be uncomfortable for the children and can lead to poor foot development. Our innovative product will revolutionize the children’s shoe industry by being a shoe that expands up to three sizes, reducing consumer costs and minimizing environmental impact.

TrackaPack

TrackaPack

Students

Ximena Castro | Computer Science

Tori Lombeida | Business

Hannah Marr | Biology

Katie McKay | Biomedical Engineering

Kennedy Williams| Biology

Faculty Mentor

Alexander Nelson, Ph.D. | Computer Science and Computer Engineering

Project Description

Do you wish you could more efficiently track your packages? This pitch deck strives to effectively track individual packages from an economical standpoint over long distances. We minimize inadequacies of default tracking systems and place tracking power into our subscribers’ hands.